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Abstract. One-particle wave-packet tunnelling in sinusoidally oscillating double-barrier 
heterostruaures(~~~)isdiscussed hereon the basisofsimulationresultsobtainedusingthe 
split operator schemeof Feiteral[l]. Thecharacteristicsof the side peaksin the mOmenNm 
space representation of the wave packet caused by the oscillations of the potential and the 
effectsof these on resonance tunnelling are analysed. Furthermore, the numerical rcsults are 
compared with an analytical expression obtained for a spatially homogeneousHamiltonian, 
giving the probabilities of inelastic interactions between the oscillating potential and the 
wave packet. 

1. Introduction 

Quantum mechanical tunnelling c lectrons through ultrasmall structures has become 
the subject of active research during the last decade. This is largely due to the advance 
in the manufacturing techniques of semiconductor devices which has enabled the con- 
struction of structures whose dimensions are comparable to the de Broglie wavelength 
of electrons. 

One of the structures that has been of particular interest is the double-barrier 
heterostructure (DBH) that consists of a quantum well surrounded by two barriers. This 
system can often be regarded as one-dimensional since it is usually made by stacking 
ultrathin layers of materials having different Fermi levels, e.g. GaAs and AIAs, and 
studying the behaviour of electrons moving perpendicular to the planes of the layers 
(see e.g. [2]). 

DBHS and their extensions to a greater number of wells and barriers, i.e. a greater 
number ofultrathin layers, areofparticular interest becauseoftheexistence of resonance 
tunnelling in which transmission currents are dramatically increased. Resonance tun- 
nelling in DBHs occurs when the energy of the incident electron equals that of a quasi 
eigenstate of the quantum well between the barriers. 

Here we consider the effect of sinusoidal oscillations of the DBH on the quantum 
mechanical tunnelling of particles. Tunnelling through various oscillating potentials has 
been discussed previously by, for example, Jiang [3], Biittiker and Landauer [4] and 
Stone et a1 [5] from a theoretical point of view, and by Jauho and Jonson [6] and Jauho 
[7] using a numerical approach. In these previous works the oscillations were restricted 
to a single sinusoidal oscillation frequency only. 
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We will, in particular, consider the effect of multiple temporal frequencies of a 
double-barrier heterostmcture on the transmission of a wave packet through the struc- 
ture numerically using the algorithm of Feit et a1 [l] for the simulation of the wave 
packet. Thesimulation resultswill be compared with asimpleanalyticalresult describing 
the effect of sinusoidally oscillating potentials on tunnelling. 

The physical motivation for our work comes from the fact that the realisations of 
DBHS are based on multicomponent layered materials with rather complicated phonon 
characteristics. The wave-packet approach, on the other hand, places maximum empha- 
sis on the coherence effects in the transport properties of such devices. 

2. Analytic discussion of a sinusoidally oscillating potential 

Let us consider multiple sinusoidal oscillations of the DBH, that is 

V(x, I) = Vo + V, cos(w,r) whenx E [U, b] (1) 
n 

where [a ,  b] is the domain of the oscillating part of the structure, which is here taken as 
one of the spatially constant parts of the DBH. We consider only small perturbations, in 
which V, is small compared to the height of the barriers. The amplitudes V,, roughly 
correspond to the phonon spectrum of the substance and thus equation (1) can be 
understood as a spatially constant potential oscillating with a discrete phonon spectrum. 

It is straightfonvard to solve the time-dependent one-particle Schrodinger equation: 

ih av(r ,  r)/at = H(x, t)v(x, I) H(x, r) = (-h2/2m)Vz + V(x, I) (2) 
analytically, ifwe consider a spatially homogeneous Hamiltonian. That is, we first solve 
the Schrodinger equation only in the oscillating area [a, b]. In this case it is possible to 
separate the spatial and temporal parts 

V(X. f ;  E) = u(x; E ) v ;  E )  

Hou(x; E) = Eu(x; E) 

(3) 

(4) 

(5) 

obeying 
HO = -(fi2/2m)Vz + V, 

and 

ihi+(I; E )  - ~ ( t ;  E )  C V, cos(w,t) = ET(I; E) 
n 

respectively. Equation (4) is just the time-independent Schrodinger equation of the 
unperturbed problem with energy equalling the separation parameter E and whose 
solution is of simple plane-wave form: 

u(x; E) = { 
The solution to the temporal equation is 

C, exp(ikr) + Cz exp(-ikr) 

C3 exp(rcx) + C, exp(-rcx) 

k = d(2m/hZ)(E - V,) 

k = v(Zm/hz)(Vo - E) 

E > V ,  

E <  V,. 
(6) 

where exp(-iEt/h) is just the time behaviour of the unperturbed problem. Following 
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the approach of Btittiker and Landauer [4,8] we expand the product term using the 
Jacobi-Anger expansion (cf [9] equation 8.511.4): 

where J ,  is the mth cylindrical Bessel function. This form is quite informative, since it 
suggests the occurrence of side peaks around the non-perturbed energy E at energies 
that are Linear combinations of the oscillation frequencies hw,. These ‘side energies’ 
can beinterpreted as the emission/absorption of modulation quanta. Thecorresponding 
probabilities are given by the absolute square of a product of the Bessel functions [lo]. 
From equation (8) it is seen that the probabilities of multiple interactions are small, if 
the perturbation amplitude is small (V, -z hw,), because of the asymptotic behaviour of 
the cylindrical Bessel functions for small arguments. 

The separation parameter E above would equal the energy of a plane wave in the 
area of interest ifthe potential was static. Thus equations (6) and (8) would in the static 
case describe the behaviour of a single frequency corresponding to the energy, E, in an 
incoming wave packet with many frequencies. In the present case of a time-dependent 
potential, the separation parameter E does not, however, equal the energy due to the 
inelastic processes that introduce the side peaks around E. Since the side peaks occur 
around each of the energies in the spectrum of the incoming wave packet the side peaks 
can be seen as discrete peaks only if the energy width of the wave packet is small 
compared with the modulation energies. 

At the boundaries of the area of interest (here a DBH) the wave-packet behaviour is 
complex and thus the wave packet comingintotheoscil1atingareaisunknown.Therefore 
the discussion above, which describes the behaviour of single frequencies only, is not 
sufficient to solve the problem of wave packets incident on an oscillating DBH. For wave 
packets sharp in momentum space, equation (8 )  gives, however, some qualitative 
information. 

3. Numerical simulation results: emission and absorption of modulation quanta 

wehave wedthesplit-operatoralgorithmofFeiterd[l] tointegratethe time-dependent 
Schrodinger equation in order to numerically simulate the behaviour of wave packets. In 
the split-operator method the wave function is propagated using the following equation, 
where the kinetic and potential operators have been separated: 

V(x, At) = exp[-i(K/2)At] exp(-iV(x, f)Af) exp[-i(K/2)At]~(n, 0) + O[(At)’]. 

(9) 
Here K(= -(hz/2m)V2) is the kinetic energy operator and V(x, I) is the potential. The 
truncation term is due to the non-commutation of these. The basic idea of the method 
is to calculate the effect of the kineticenergy operator in momentum space and the effect 
of the potential operator in real space. The advantage of this is that the operators are 
diagonal in the respective spaces and their effect is thus reduced to plain multiplication. 
Moreover the split-operator equation (9) is accurate to the second order of time step At. 
The transformation between real and momentum space is performed using fast Fourier 
transformations and is therefore efficient and accurate. 
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Figurc1.7hesymmetricstaticos~potentialwilh 
an oscillating quantum well. 

Figure 2. The probability density in momentum 
space for a wave packet incident on the DBH of 
figure 1 in which the quantum well is oscillating 
with a single frequency hot=O.ffi53eV and 
amplitude V, = 0.0109eV. The mean energy of 
the wave packet initially equalled the second res- 
onance energy (0.OlWeV) of the static DBH of 
figure 1. Theside peaksaround the mainincident 
and retlected pealiscorresponding to absorption/ 
emision of modulation quanta have been indi- 
cated. The frame has been taken at a time step 
when the wave packet has split into transmitted. 
reflected and trapped parts. 

We have used the split-operator algorithm to study the behaviour of an initially 
Gaussian wave packet incident on a symmetrical DBH in which the quantum well is 
oscillating and the barriers are kept constant. The dimensions of the potential structure 
used here are close to those of Jauho [7] and the oscillation frequencies and amplitudes 
are of the same order of magnitude. The height of the symmetric barriers is 0.218 eV 
and their width is 14.8 A. The width of the quantum well is 59.3 A and it is oscillating 
around the zero level of the potential (see figure 1). 

In order for the incoming particle to ‘see’ the oscillations, the traversal time of the 
wave packet must not be too small compared with the oscillation period [4]. That is, the 
usual Born-Oppenheimer (BO) assumption must not be valid if the oscillations are to be 
relevant. 

In the case of resonance transmission, when the transmission coefficients of the 
individual barriers are small, a part of the wave packet becomes trapped in the quasi- 
eigenstate of the quantum well. The lifetime of this localized state is proportional to the 
inverse of the transmission coefficients of the barriers and can thus be very long Il l]  and 
therefore the traversal time also becomes long and the BO assumption often fails. In the 
simulation experiments to be described here the BO assumption fails both in and off 
resonance. 

In order to study the effects of different oscillation frequencies of the potential 
(equation (1)) we have studied the cases of: (i) one oscillation frequency hw, = 
0.0653 eV; (ii) two oscillation frequencies, the frequency fiwl and its double, hw2 = 
2nw = 0.131 eV; and (iii) two incommensurate oscillation frequencies h o ,  and h o 2  = (d- 1)hol  = 0.0807 eV. In all these cases the oscillation amplitude was equal for all 

. . 
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Ewe 3. As figure 2, but for a quantum well 
oscillatingwithtwo frequenciesho, = 0.0653 eV 
and hw, = 2hol = 0.131 eV with equal ampli- 
tudes V ,  = V ,  = 0.0109 eV. Comparison with 
figure 1 clearly shows that all the side peaks are 
enhanced in this case. 

k 
Figure4.AsiiguresZand3, but when thequantum 
well is oscillating with the frequencies ho, = 
0.0653eVandf"= (V-5- I )ho ,  =0.0807eV 
withequal amplitudes Vi = V, = 0.0109eV. The 
heightsoftheside peaks corresponding tointeger 
multiplesofo, arealmost thesameasinfigure2. 

the frequencies, V ,  = V2 = 0.0109eV and the other dimensions of the DBH were kept 
constant. The mean energy of the incident wave packet was chosen to equal the second 
bound state of the quantum well, i.e. the second resonance transmission energy of the 
system (=O. 100 eV). The width of the initial wave packet in energy space was chosen so 
that it was somewhat smaller than the modulation energies, A E  = 0.0381 eV, which 
gives relatively sharp absorption/emission side-peaks. 

The momentum space representations of the scattered wave packets in the three 
cases are shown respectively in figures 2 , 3  and 4. In momentum space the side peaks 
corresponding to the absorption and emission of modulation quanta are clearly seen 
around the main peaks corresponding to the transmitted and reflected wave packets. 
Whenresultsofthecasesofasingle-frequencyoscillation (i) and thecaseof anoscillation 
frequency and its double (ii) are compared, it is clearly seen that in the two-oscillation 
case (figure 3) the side peaks are bigger than in the single-oscillation case (figure 2). It 
is somewhat in contradiction with intuition that not only the side peaks corresponding 
to an even multiple of the single-frequency oscillation frequency w ,  are enlarged but 
also those corresponding to an uneven multiple. On the other hand, when the case of 
the incommensurate oscillation frequencies (figure 4) is compared with the single- 
frequency case (figure 2) the peaks corresponding to a multiple of the single frequency 
w ,  remain almost intact. 

The areas under the side peaks can be interpreted as the probabilities of interaction 
and can thus be compared to the coefficients of the analytical expression of equation 
(S), where E corresponds to the initialmeanenergyof thewave packet andthe analytical 
side peaks correspond to the side peaks in the momentum spectrum of the simulated 
wave packet. The analytical probabilities calculated from equation (8) are consistent 
with the trends of the numerical experiments described above. 

The analytical expression is, however, only qualitative and, for example, the relative 
sizesofthedifferent sidepeaksobtainedfromnumericalsimulationdonot quantitatively 
agree with those obtained from equation (8). This is due to the fact that the analytical 
expression is valid only for a spatially homogeneous Hamiltonian and describes the 
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behaviour of just one of the frequencies in the incoming wave packet as discussed in the 
previous section. 

M F Bjorksten et a1 

4. Oscillating DBH and resonance transmission 

When the transmission coefficients of the two individual barriers are small, resonance 
transmission occurs in static DBHS whenever the energy of the incoming particle is within 
a certain energy interval of a quasi-eigenstate energy of the quantum well [S, 121. In 
resonance transmission the overall transmission coefficient is of the order of the ratio of 
the smaller to the larger of the individual transmission coefficients of the two barriers 
and not their product as in the case of off resonance. Thus in resonance, especially if the 
transmission coefficients of the barriers are equal, there is a dramatic increase in overall 
transmission of the DBH. 

In the case of incoming wave packets, with a finite energy width, only the part of the 
wave packets that is within the resonancewidth of a bound state energy will be resonantly 
transmitted. (This is a somewhat vague notion, since the transmission decreases con- 
tinuously as the energy differs from a resonance energy and the 'resonance width' is a 
rather arbitrary quantity 1111.) 

When the DBH is oscillating the situation isslightly changed. Firstly, the bound-state 
energiesof the quantum well are not static. If the oscillations of the bound-state energies 
are small compared with the resonance width of the resonance energy, the movement 
of the bound-state energies is not very important, This is the case when the oscillation 
amplitudes are sufficiently small. 

Secondly, when the mean energy of the incoming particle equals a resonance energy 
of the static system the effect of the (small) oscillations is the introduction of the side 
peaks to the energy spectrum of the wave packet, which generally are off-resonance 
and thus the overall resonance transmission is reduced [ll]. If, however, one of the 
modulated energies Eo + mhwi falls within another resonance, the transmission of the 
part of the wave packet corresponding to the modulated energy will be enhanced. On 
the other hand, the other side peaks are usually off-resonance and will thus reduce the 
overall transmission and the effect on the overalltransmission will depend on the relative 
importance of the in-resonance and off-resonance side peaks. 

If the initial meanenergy ofthe wave packet isoff-resonance anda modulatedenergy 
is in-resonance the overall transmission will clearly increase. This was demonstrated by 
Jauho 171 in a numerical simulation. 

These qualitative expectations were studied by simulating the behaviour of wave 
packets in the various oscillating DBHs and by then calculating the corresponding total 
transmissioncoefficients by numericintegration. The resultsare shown in table 1 andare 
consistent with the expectations, although the absolute differences in the transmission 
coeficients obtained are rather small. 

5. Discussion 

The split-operator algorithm of Feit et nl [l]  is a very effective method for integrating 
the time-dependent one-particle Schrodinger equation for an arbitrary time-dependent 
external potential. Here the numerical simulations have been carried out for simple one- 
dimensional double-barrier heterostructures, but the numerical method enables the 
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Table 1. The global transmission constant in various cases. m, is the (single) modulation 
frequency and E is the average initial energy of the wave packet; E2 = 0.100 eV and E, = 
O.ZL%?eV are the semnd and third bound-state energies of the DBH, respectively. The 
amplitude of oscillation V, = 0.0109 eV is kept constant. (a) The stationary resonance case. 
@)The modulated energy does not equal any resonance energy The transmission is slightly 
reduced compared with the stationary case. (c) One modulated energy equals resonance 
energy. The transmission is slightly bigger than in the previous case but still less than in the 
stationary case. (d) Non-resonance stationary case. Small transmission of the order of the 
product of the plane-wave transmissions for the individual barriers. (e) Initial energy off 
resonance, but modulated energy equals the third resonance energy of thewell. Transmission 
is slightly greater than in the stationary caSe (d). (0 Initial and modulated energies off 
resonance. Transmission is comparable to the stationary case (d). 

Average initial Modulation quantum Transmission 
energy E (ev) fiw, (eV) mefficient T 

~ 

(a) E2 = 0.100 stationary 0.1374 
(b) E2 = 0.100 0.0653 0.1326 
(c) EI = 0.100 E, - E2 = 0.1M 0.1354 
(d) 0.137 stationary 7.202.10-4 
(e) 0.137 E, - 0.137 = 0.0653 1.052. 10-3 
( f )  0.137 E,  - El = 0.102 7.527. IO-' 

simulation of far more complex systems in a higher number of dimensions. We believe 
that numerical simulation of the behaviour of wave packets is a very effective method for 
studying the time-dependent quantum mechanical behaviour of particles in ultrasmall 
structures of interest. 

The derived analytical expression for a spatially homogeneous Hamiltonian (8) 
describing the effect of sinusoidal oscillations proved to be of some qualitative value to 
the understanding of the effect of small osciilations of multiple frequencies on the 
behaviour of a wave packet in the DBH potentials. 

The results of the numerical simulations are consistent with the expectations of the 
effect of the oscillations on the overall transmission coefficients of the DBH when the 
incident and/or modulated energies equal a resonance energy of the system as discussed 
in [5 ]  and [6]. 
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